

Micro Power 3 V Linear Hall Effect Sensor ICs withTri-State Output and User-Selectable Sleep Mode

Features and Benefits

- High-impedance output during sleep mode
- Compatible with 2.5 to 3.5 V power supplies
- 10 mW power consumption in the active mode
- Miniature MLP/DFN package
- Ratiometric output scales with the ratiometric supply reference voltage (VREF pin)
- Temperature-stable quiescent output voltage and sensitivity
- Wide ambient temperature range: -20°C to 85°C
- ESD protection greater than 3 kV
- Solid-state reliability
- Preset sensitivity and offset at final test

Package: 6 pin MLP/DFN (suffix EH)

Description

The A139x family of linear Hall effect sensor integrated circuits (ICs) provide a voltage output that is directly proportional to an applied magnetic field. Before amplification, the sensitivity of typical Hall effect ICs (measured in mV/G) is directly proportional to the current flowing through the Hall effect transducer element inside the ICs. In many applications, it is difficult to achieve sufficient sensitivity levels with a Hall effect sensor IC without consuming more than 3 mA of current. The A139x minimize current consumption to less than 25 µA through the addition of a user-selectable sleep mode. This makes these devices perfect for battery-operated applications such as: cellular phones, digital cameras, and portable tools. End users can control the current consumption of the A139x by applying a logic level signal to the SLEEP pin. The outputs of the devices are not valid (high-impedance mode) during sleep mode. The high-impedance output feature allows the connection of multiple A139x Hall effect devices to a single A-to-D converter input.

The quiescent output voltage of these devices is 50% nominal of the ratiometric supply reference voltage applied to the VREF pin of the device. The output voltage of the device is not ratiometric with respect to the SUPPLY pin.

Continued on the next page...

Functional Block Diagram

Micro Power 3 V Linear Hall Effect Sensor ICs with Tri-State Output and User Selectable Sleep Mode

Description (continued)

Despite the low power consumption of the circuitry in the A139x, the features required to produce a highly-accurate linear Hall effect IC have not been compromised. Each BiCMOS monolithic circuit integrates a Hall element, improved temperature-compensating circuitry to reduce the intrinsic sensitivity drift of the Hall element, a small-signal high-gain amplifier, and proprietary dynamic

offset cancellation circuits. End of line, post-packaging, factory programming allows precise control of device sensitivity and offset.

These devices are available in a small 2.0×3.0 mm, 0.75 mm nominal height microleaded package (MLP/DFN). It is Pb (lead) free, with 100% matte tin leadframe plating.

Selection Guide

Part Number	Sensitivity (mV/G, Typ.)	Package	Packing ¹
A1391SEHLT-T ²	1.25	DFN/MLP 2x3 mm; 0.75 mm nominal height	7-in. reel, 3000 pieces/reel
A1392SEHLT-T ²	2.50	DFN/MLP 2×3 mm; 0.75 mm nominal height	7-in. reel, 3000 pieces/reel
A1393SEHLT-T ²	5	DFN/MLP 2×3 mm; 0.75 mm nominal height	7-in. reel, 3000 pieces/reel
A1395SEHLT-T ²	10	DFN/MLP 2×3 mm; 0.75 mm nominal height	7-in. reel, 3000 pieces/reel

¹Contact Allegro[™] for additional packing options.

²Allegro products sold in DFN package types are not intended for automotive applications.

Absolute Maximum Ratings*

Characteristic	Symbol	Notes	Rating	Unit
Supply Voltage	V _{CC}		8	V
Reverse-Supply Voltage	V _{RCC}		-0.1	V
Ratiometric Supply Reference Voltage	V _{REF}		7	V
Reverse-Ratiometric Supply Reference Voltage	V _{RREF}		-0.1	V
Logic Supply Voltage	V _{SLEEP}	(V _{CC} > 2.5 V)	32	V
Reverse-Logic Supply Voltage	VRSLEEP		-0.1	V
Output Voltage	V _{OUT}		V _{CC} + 0.1	V
Reverse-Output Voltage	V _{ROUT}		-0.1	V
Operating Ambient Temperature	T _A	RangeS	-20 to 85	°C
Junction Temperature	T _J (MAX)		165	°C
StorageTemperature	T _{stg}		-65 to 170	°C

*All ratings with reference to ground

Pin-out Diagram

Terminal List Table

Pin	Name	Function
1	VCC	Supply
2	OUT	Output
3	GND	Ground
4	GND	Ground
5	SLEEP	Toggle sleep mode
6	VREF	Supply for ratiometric reference

Micro Power 3 V Linear Hall Effect Sensor ICs with Tri-State Output and User Selectable Sleep Mode

Device Characteristics Tables

Characteristic	Symbol	Test Conditions	Min.	Typ. ¹	Max.	Units
Supply Voltage	V _{CC}		2.5	_	3.5	V
Nominal Supply Voltage	V _{CCN}		-	3.0	_	V
Supply Zener Clamp Voltage	V _{CCZ}	I _{CC} = 7 mA, T _A = 25°C	6	8.3	_	V
Ratiometric Reference Voltage ²	V _{REF}		2.5	-	V _{CC}	V
Ratiometric Reference Zener Clamp Voltage	V _{REFZ}	I_{VREF} = 3 mA, T_A = 25°C	6	8.3	-	V
SLEEP Input Voltage			-0.1	_	V _{CC} + 0.5	V
SLEEP Input Threshold	V _{INH}	For active mode	-	0.45 × V _{CC}	_	V
SLEEP Input Inteshold	V _{INL}	For sleep mode	- 1	0.20 × V _{CC}	_	V
	R _{REF}	$V_{SLEEP} > V_{INH}$, $V_{CC} = V_{CCN}$, $T_A = 25^{\circ}C$	250	_	-	kΩ
Ratiometric Reference Input Resistance		$V_{SLEEP} < V_{INL,} V_{CC} = V_{CCN,}$ $T_A = 25^{\circ}C$	_	5	-	MΩ
Chopper Stabilization Chopping Frequency	f _C	$V_{CC} = V_{CCN}, T_A = 25^{\circ}C$	-	200	-	kHz
SLEEP Input Current	I _{SLEEP}	V_{SLEEP} = 3 V, V_{CC} = V_{CCN}	-	1	-	μΑ
Supply Current ³	I _{CC}	$V_{SLEEP} < V_{INL,} V_{CC} = V_{CCN,}$ $T_A = 25^{\circ}C$	-	0.025	-	mA
		$V_{SLEEP} > V_{INH}$, $V_{CC} = V_{CCN,}$ $T_A = 25^{\circ}C$	-	3.2	-	mA
Quiescent Output Power Supply Rejection ⁴	PSR _{VOQ}	f _{AC} < 1 kHz	-	-60	-	dB

ELECTRICAL CHARACTERISTICS valid through full operating ambient temperature range, unless otherwise noted

¹Typical data are for initial design estimations only, and assume optimum manufacturing and application conditions, such as $T_A = 25^{\circ}$ C. Performance may vary for individual units, within the specified maximum and minimum limits.

 2 Voltage applied to the VREF pin. Note that the V_{REF} voltage must be less than or equal to V_{cc}. Degradation in device accuracy will occur with applied voltages of less than 2.5 V.

 3 If the VREF pin is tied to the VCC pin, the supply current would be I_{CC} + V_REF / R_REF

 4 $\rm f_{AC}$ is any AC component frequency that exists on the supply line.

Micro Power 3 V Linear Hall Effect Sensor ICs with Tri-State Output and User Selectable Sleep Mode

OUTPUT CHARACTERISTICS valid through full operating ambient temperature range, unless otherwise noted

Characteristic	Symbol		Test Conditions	Min.	Typ.1	Max.	Units
Linear Output Voltage	V _{OUTH}	V _{CC} = V	$V_{\rm CCN}, V_{\rm REF} \le V_{\rm CC}$	_	V _{REF} – 0.1	-	V
Range	V _{OUTL}	$V_{CC} = V$	$V_{\rm CCN}, V_{\rm REF} \le V_{\rm CC}$	_	0.1	-	V
Maximum Voltage Applied to Output	V _{OUTMAX}	V _{SLEEP}	< V _{INL}	_	-	V _{CC} + 0.1	V
		A1391	$T_A = 25^{\circ}C, V_{CC} = V_{REF} = V_{CCN}$	-	1.25	-	mV/G
Sensitivity ²	Sens	A1392	$T_A = 25^{\circ}C, V_{CC} = V_{REF} = V_{CCN}$	-	2.50	-	mV/G
Sensitivity-	Selis	A1393	$T_A = 25^{\circ}C, V_{CC} = V_{REF} = V_{CCN}$	-	5	-	mV/G
		A1395	$T_A = 25^{\circ}C, V_{CC} = V_{REF} = V_{CCN}$	-	10	-	mV/G
Quiescent Output	V _{OUTQ}	$T_{A} = 25$	5°C, B = 0 G	-	0.500 × V _{REF}	-	V
Output Resistance ³	R _{OUT}	$f_{out} = 1$	kHz, $V_{SLEEP} > V_{INH}$, active mode	-	20	-	Ω
		$f_{out} = 1$	kHz, $V_{SLEEP} < V_{INL}$, sleep mode	-	4M	-	Ω
Output Load Resistance	RL	Output	to ground	15	-	-	kΩ
Output Load Capacitance	CL	Output	to ground	-	-	10	nF
Output Bandwidth	BW	-3 dB V _{CC} = V	-3 dB point, V_{OUT} = 1 V_{pp} sinusoidal, $V_{CC} = V_{CCN}$		10	_	kHz
		1391	C _{bypass} = 0.1 μF, BW _{externalLPF} = 2 kHz	_	6	12	mV _{pp}
			$C_{bypass} = 0.1 \ \mu F$, no load	_	-	20	mV _{pp}
Noise ^{4,5}	V _n	1392	$C_{bypass} = 0.1 \ \mu F$, no load	_	-	40	mV _{pp}
		1393	C _{bypass} = 0.1 μF, BW _{externalLPF} = 2 kHz	_	12	24	mV _{pp}
			$C_{bypass} = 0.1 \ \mu F$, no load	-	-	40	mV _{pp}
		1395	$C_{bypass} = 0.1 \ \mu F$, no load	_	-	80	mV _{pp}

¹Typical data are for initial design estimations only, and assume optimum manufacturing and application conditions, such as $T_A = 25^{\circ}C$. Performance may vary for individual units, within the specified maximum and minimum limits.

²For V_{REF} values other than V_{REF} = V_{CCN}, the sensitivity can be derived from the following equation: $K \times V_{REF}$, where K =0.416 for the A1391, K= 0.823 for the A1392, K = 1.664 for the A1393, and K = 3.328 for the A1395.

 $^3f_{\rm OUT}$ is the output signal frequency_

⁴Noise specification includes digital and analog noise.

⁵Values for BW_{externalLPF} do not include any noise resulting from noise on the externally-supplied VREF voltage.

Micro Power 3 V Linear Hall Effect Sensor ICs with Tri-State Output and User Selectable Sleep Mode

OUTPUT TIMING CHARACTERISTICS¹ $T_A = 25^{\circ}C$

Characteristic	Symbol	Test Conditions	Min.	Typ. ²	Max.	Units
Power-On Time ³	t _{PON}		-	40	60	μs
Power-Off Time ⁴	t _{POFF}		—	1	_	μs

¹See figure 1 for explicit timing delays.

²Typical data are for initial design estimations only, and assume optimum manufacturing and application conditions, such as $T_A = 25^{\circ}$ C. Performance may vary for individual units, within the specified maximum and minimum limits.

³Power-On Time is the elapsed time after the voltage on the SLEEP pin exceeds the active mode threshold voltage, V_{INH}, until the time the device output reaches 90% of its value.

⁴Power-Off Time is the duration of time between when the signal on the \overline{SLEEP} pin switches from HIGH to LOW and when I_{CC} drops to under 100 µA. During this time period, the output goes into the HIGH impedance state.

MAGNETIC CHARACTERISTICS $T_A = 25^{\circ}C$

Characteristic	Symbol	Test Conditions	Min.	Тур.*	Max.	Units
Ratiometry	ΔV _{OUTQ(ΔV)}		-	100	-	%
Ratiometry	ΔSens _(ΔV)		-	100	-	%
Positive Linearity	Lin+		-	100	-	%
Negative Linearity	Lin–		-	100	-	%
Symmetry	Sym		-	100	-	%

*Typical data are for initial design estimations only, and assume optimum manufacturing and application conditions, such as T_A = 25°C. Performance may vary for individual units, within the specified maximum and minimum limits.

